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Neuroimaging measurements derived from magnetic resonance imaging provide

important information required for detecting changes related to the progression of mild

cognitive impairment (MCI). Cortical features and changes play a crucial role in revealing

unique anatomical patterns of brain regions, and further differentiate MCI patients from

normal states. Four cortical features, namely, gray matter volume, cortical thickness,

surface area, and mean curvature, were explored for discriminative analysis among three

groups including the stable MCI (sMCI), the convertedMCI (cMCI), and the normal control

(NC) groups. In this study, 158 subjects (72 NC, 46 sMCI, and 40 cMCI) were selected

from the Alzheimer’s Disease Neuroimaging Initiative. A sparse-constrained regression

model based on the l2-1-norm was introduced to reduce the feature dimensionality

and retrieve essential features for the discrimination of the three groups by using a

support vector machine (SVM). An optimized strategy of feature addition based on the

weight of each feature was adopted for the SVM classifier in order to achieve the best

classification performance. The baseline cortical features combined with the longitudinal

measurements for 2 years of follow-up data yielded prominent classification results. In

particular, the cortical thickness produced a classification with 98.84% accuracy, 97.5%

sensitivity, and 100% specificity for the sMCI–cMCI comparison; 92.37% accuracy,

84.78% sensitivity, and 97.22% specificity for the cMCI–NC comparison; and 93.75%

accuracy, 92.5% sensitivity, and 94.44% specificity for the sMCI–NC comparison. The

best performances obtained by the SVM classifier using the essential features were

5–40% more than those using all of the retained features. The feasibility of the cortical

features for the recognition of anatomical patterns was certified; thus, the proposed

method has the potential to improve the clinical diagnosis of sub-types of MCI and predict

the risk of its conversion to Alzheimer’s disease.

Keywords: mild cognitive impairment, conversion, cortical feature, sparse-constrained regression, feature

reduction, classification
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INTRODUCTION

The most common form of dementia, Alzheimer’s disease (AD),
is a progressive neurodegenerative disorder in the elderly that
affects their health and quality of life; it affects memory, thinking,
behavior, and the ability to perform everyday activities in the
elderly worldwide (Kandimalla et al., 2011; Zhang et al., 2014).
According to the 2013, 2014, and 2015 World Alzheimer Report
(Prince et al., 2013, 2014, 2015), approximately 35.6 million
people were suffering from dementia in 2010, and the worldwide
cost of dementia care was greater than US$ 600 billion or
approximately 1% of the global GDP. It is estimated that this
number will reach 65.7 million in 2030 and 115.4 million in 2050
owing to the dramatic increase in the global aging population.
Unfortunately, the reasons for, and mechanisms and progression
of AD are yet to be fully understood; there are no established
diagnostic biomarkers and effective treatments for dementia
(Chételat et al., 2010). Prior studies have suggested that the
pathologic timeline of AD may begin anywhere from a few years
to decades before clinical diagnosis, with an initial asymptomatic
phase (preclinical AD) followed by a phase with MCI (Jack
et al., 2010; Hinrichs et al., 2011). Therefore, the prevention and
detection of dementia in its early stage and the tracking and
prediction of its progress are critical to preventing the onset of
this disease or slowing the advancement of neurodegeneration.

As is well known, MCI is considered as a transitional stage
between normal aging and the development of AD (Petersen
et al., 2009), and patients with MCI, especially amnestic MCI,
have a high risk (10–15%) of converting to AD patients (Petersen
et al., 1999; Morris et al., 2001; Morris and Cummings, 2005).
Therefore, it is very important to investigate the progression and
development of MCI, in order to reveal subtle changes in brain
structure and elucidate dysfunction in cognition. It is becoming
increasingly important to seek effective biomarkers to monitor
MCI development, track its progress, and predict its conversion
to AD at an early stage.

The existing biomarkers for MCI detection and prediction
of development to AD can be divided into three categories:
gene biomarkers, chemical biomarkers, and neuroimaging
biomarkers. The ε 4 allele of the human apolipoprotein E gene
(APOE) is a well-proven genetic risk factor associated with
brain integrity and can be used as a biomarker for detecting
the early stages of MCI (Farlow et al., 2004; Risacher et al.,
2013). Single nucleotide polymorphisms (SNPs) in the APOE
and the TOMM40, EPHA4, TP63, and NXPH1 genes were
confirmed as markers strongly associated with the destruction
of synaptic integrity in MCI and AD patients (Shen et al., 2010).
Furthermore, the sortilin-related receptor gene (SORL1) showed
potential as a risk factor forMCI conversion to AD (Piscopo et al.,
2015).

The use of chemical biomarkers has also been widely explored;
these include the use of cerebrospinal fluid (CSF) Aβ, CSF
tau (Mattsson et al., 2012; Kandimalla et al., 2013; Ferreira
et al., 2014), 11C-Pittsburgh compound B positron emission
tomography (11C PIB-PET), Aβ imaging (Mattsson et al., 2012;
Banzo et al., 2015), FDG-PET (Mosconi et al., 2009; Zhang et al.,
2012; Smailagic et al., 2015), magnetic resonance spectroscopy

(MRS), and magnetic resonance spectroscopy imaging (MRSI)
(Modrego et al., 2005, 2011; Pilatus et al., 2009; Targosz-Gajniak
et al., 2013; Gao and Barker, 2014; Watanabe et al., 2015). It has
been demonstrated that changes in chemical biomarkers have the
potential to reveal progressive accumulations of MCI and AD
pathologies.

Neuroimaging measurements, including structural magnetic
resonance imaging (sMRI) (Rose et al., 2000; Kim et al., 2012;
Franko and Joly, 2013; Boutet et al., 2014; Peng et al., 2015),
functional magnetic resonance imaging (fMRI) (Singh et al.,
2012; Li et al., 2015), have become the mainstay in MCI and AD
diagnosis and progressive risk evaluation owing to their visual
representation, intuitive illustration, and reliability.

The pattern of cortical atrophy obtained from sMRIs and
morphological analysis have been extensively investigated to
discriminate the MCI, the AD from the normal elderly or
normal controls (NCs) (Fan et al., 2008; Schuff et al., 2009;
Franko and Joly, 2013; Boutet et al., 2014; Peng et al., 2015),
distinguish the stable MCI (sMCI) from the converted MCI
(cMCI) (Chetelat et al., 2005; Davatzikos et al., 2011), and
trace and predict conversion from NCs to MCI and from
the MCI to AD (Driscoll et al., 2009; Davatzikos et al.,
2011; Adaszewski et al., 2013; Eskildsen et al., 2013b). The
most commonly used sMRI biomarker in these studies is the
hippocampal volume, which is related to memory and spatial
navigation. Some recent works incorporate the hippocampus
with other dominant regions including the parahippocampus,
the inferior temporal gyrus, the middle temporal gyrus, and
the posterior cingulate cortex as sMRI biomarkers. In addition
to decreases in gray matter (GM) volume, other morphological
signatures such as the thickness of GM, depth and surface
area of the sulus, and curvatures of the sulus surface have
been of central interest in characterizing cortical atrophy and
change. For example, with disease progression from NC to
MCI and from MCI to AD, the mean curvature decreased
and the sulcal depth tended to be shallower; in addition,
the most remarkable sulcal widening was observed in the
temporal lobe (Im et al., 2008). The cortical thinning areas were
related to hippocampal atrophy (Kim et al., 2012). The cortical
thickness could be considered as a quantitative biomarker of
dementia (Dickerson et al., 2012), and the cortical thickness
and the sulcal depth were adopted as biomarkers for early
detection of AD and prediction of conversion (Park et al.,
2013). Based on the observations of hippocampal atrophy and
glucose hypometabolism of strongly connected regions including
the posterior cingulate, the thalamus, the parahippocampal
gyrus, and the hippocampus, GM atrophy appears to result
in a subsequent degeneration in white matter (WM) (Villain
et al., 2008). Magnetic resonance (MR) diffusion tensor imaging
(DTI) revealed AD-related abnormalities in the structural
integrity of WM such as corpus callosum, superior longitudinal
fasciculus, and cingulum (Rose et al., 2000; Medina et al.,
2006). Recent studies suggest that the MCI and AD groups
have significant disruption in either the structural network
or functional network (Dickerson and Sperling, 2009; Dai
and He, 2014; Li et al., 2014, 2015; Wang et al., 2015; Yi
et al., 2015); these profiles indicated that aberrant network
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dysfunctions might be the potential biomarkers or predictors of
MCI progression.

Because these three types of biomarkers complement
each other, there are an increasing number of studies being
conducted to combine multiple biomarkers in order to improve
the degeneration identification and conversion prediction
of MCI and AD cohorts. For example, MRI morphometry,
CSF biomarkers, and neuropsychological and functional
measurements were combined as features to predict MCI
conversion with an accuracy of 67.13%, a sensitivity of 96.43%,
and a specificity of 48.28% (Cui et al., 2011). Using genetic,
structural, and functional imaging biomarkers, the support
vector machine (SVM) classifier attained an accuracy of 64.57%,
a sensitivity of 72.20%, and a specificity of 58.90% (Singh et al.,
2012). More studies have been focused on attempting to evaluate
the combined role of different biomarkers such as CSF and
MRI markers (Davatzikos et al., 2011; Westman et al., 2012), 18
F-FDG and 11C-PIB-PET (Zhang et al., 2012), MRI measures,
PET-FDG numerical summary, CSF biomarkers (t-tau, p-tau,
and Aβ42), and APOE genotype (Kohannim et al., 2010).

These combination studiesmade use of themultivariatemodel
to combine different measures to construct classifiers to improve
the prediction of AD dementia in patients with MCI. However,
the main unresolved challenge is how to effectively integrate
various measures for classification and identification of the
dominant features associated with MCI conversion. Traditional
filter-based feature selection methods such as F-statistic and
t-test focus on the relation of a feature with respect to the
class label distribution of the data, but they do not take into
account the correlation of features. Principle component analysis
(PCA), a well-known dimensionality reduction method, involves
an orthogonal transformation to convert a set of observations
of possibly correlated variables into a set of values of linearly
uncorrelated variables called principal components. All of the
principal components are orthogonal to each other and, as a
whole, form an orthogonal basis for the space of the original
data. Although the PCA reveals the internal structure of the data
in an effective manner that projects the entire set of data onto
a different subspace, it experiences difficulty in comparing the
significance of different features and understanding the causes
of dementia and its development in pathology. In addition
to the statistic method and PCA, embedded methods such
as correlation-based feature selection (Hall and Smith, 1999)
and the SVM recursive feature elimination (SVM-RFE) (Guyon
et al., 2002) considers feature selection in the training process.
Although the SVM-RFE can ensure high performance, it is a
computationally expensive task.

Recently, the theory of sparse representation in
dimensionality reduction has been widely investigated and
successfully integrated with compressed sensing and other
applications (Nie et al., 2010; Wang et al., 2011; Bao et al.,
2013; Yang et al., 2013; Yan and Yang, 2015). This optimization
problem, which uses sparsity constraints, attempts to provide a
sparse vector whose consistency with the acquired data is usually
determined based on the squared error. The subspace learning
and dimensionality selecting strategy is preferable in regression
and classification problems in multiple-biomarker analysis on

neurodegenerative disorders such as MCI/AD identification,
sMCI/cMCI discrimination, and MCI conversion prediction.

Most reports suggest that subjects with MCI exhibit atrophy
in cortical association areas with prominent involvement
of the temporal, parietal, and frontal regions, and cortical
measurements and its changes are the significant biomarkers for
detecting the progression of MCI (McEvoy et al., 2011; Li et al.,
2012). Nonetheless, it is still difficult to systematically explore
an effective dimensionality reduction strategy and perform
discrimination analysis of cortical surface features from baseline
and longitudinal MR images for the NC, sMCI, and cMCI
groups. In this study, we calculated four types of cortical
surface features from 2 years of follow-up MR images, then
combined the baseline features with longitudinal measures, and
used dimensionality reduction based on sparse representation to
retrieve the dominant features for the SVM classification of the
three compared groups.

MATERIALS AND METHODS

Subjects
One hundred and fifty-eight subjects in this study were selected
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (http://www.loni.ucla.edu/ADNI/). This study included
72 NC subjects, 46 sMCI subjects, and 40 cMCI subjects. The
MR image data for each subject was acquired and evaluated
using two cognitive impairment measures—the mini-mental
state examination (MMSE) and clinical dementia rating (CDR)—
at three time points: baseline, 12, and 24 months. Among the
identifiedMCI patients at baseline, an individual was determined
as a patient with cMCI if the subject had converted to AD within
2 years, and the rest were considered as sMCI subjects. Table 1
shows the subject demographics and dementia status.

Image Acquisition
The datasets included standard T1-weighted MR images
acquired from 1.5 T scanners using volumetric 3D MPRAGE
(magnetization prepared rapid gradient echo) with a 1.25× 1.25-
mm in-plane spatial resolution and 1.2-mm thick sagittal slices,
and the pixel resolution was 256 × 256. The data were collected
from a variety of scanners using the protocol specified on the
ADNI website.

Data Processing and Cortical Features
Computation
The images were processed and analyzed by the software
FreeSurfer version 5.0.0 (http://surfer.nmr.mgh.harvard.edu/),
which provides a set of tools that can be used for the analysis
and visualization of structural and functional brain images. The
FreeSurfer pipeline can produce regional cortical thickness and
volumetric measurements including the local curvature, surface
area, and the surface normal. First, image intensity variations
due to magnetic fiagn inhomogeneities were corrected, and a
normalized intensity image was generated (Sled et al., 1998).
Second, skull stripping based on a hybrid watershed–surface-
deformation method was adopted to remove the non-brain tissue
(Segonne et al., 2004). Third, the obtained image was segmented
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resulting in classified voxels belonging to either the white matter
or non-white matter. Fourth, a triangular tessellation scheme
was employed to generate a mesh of triangular faces, which
was followed by several processes such as smoothing, inflation,
and correction for topological defects (Fischl et al., 2001;
Segonne et al., 2007), and the gray–white interface and the pial
surface were thus obtained. Finally, two types of morphological
measurements at each vertex were computed; these included
volumetric features (cortical thickness, surface area, and GM
volume) and geometric features (sulcal depth and curvature). The
cortical thickness was calculated as the distance between linked
vertexes on the interface and the pial surface. The surface area
at each vertex was defined as the sum of the area of the triangles
touching that vertex on the pial surface. The GM volume at every
vertex was determined as the sum of the volumes of the individual
triangles that lay within the neighborhood of the vertex, while the
volume of each triangle was computed as the product of its area
and the thickness at the center of the triangle. The two curvature
measures, namely, mean curvature and Gaussian curvature, were
derived from the principal curvatures, which were the maximum
and minimum values of the curvatures of the various normal
planes at the vertex. The Gaussian curvature of a surface at
a vertex was the product of the two principal curvatures, and
the mean curvature was the average of these. The sign of the
Gaussian curvature was used to characterize the surface; the
mean curvature described the average degree of bending of
the surface at the vertex. The cortical surface was divided into
68 distinct cortical regions of interest (ROIs) according to the
Desikan–Killiany atlas (Desikan et al., 2006); 34 cortical ROIs
were extracted in each of the individual hemispheres.

In this study, four cortical morphological features were
selected for discriminative analysis: GM volume (GMV), surface
area (SA), cortical thickness (CT), and mean curvature (MC).
To eliminate the effects of outliers and allow the comparison of
corresponding values from different datasets, all the feature data
were normalized as z-scores.

Sparsity-Constrained Dimensionality
Reduction
The least squares problems usually occur in signal processing,
regression, and classification. Given the training set
{x1, x2, · · · , xn} ∈ Rd and the corresponding class labels
{

y1, y2, · · · , yn
}

∈ Rc, the basic model of the least square
regression is:

min
W

n
∑

i=1

∥

∥

∥
WTxi − yi

∥

∥

∥

2

2
(1)

where W denotes the parameter matrix of size d × c, and ‖.‖ is
the Frobenius norm of the matrix.

Instead of the traditional l2-norm, the l2,1-norm was
introduced to solve the optimization problem as follows:

min
W

n
∑

i=1

∥

∥

∥
WTxi − yi

∥

∥

∥

2
(2)
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Let pi,j be an element of matrix p ∈ Rm×n, and the l2,1-norm is
defined as:

‖P‖2–1

n
∑

i=1

√

√

√

√

m
∑

j=1

p2
i,j

(3)

The l2,1-norm has the peculiar ability to suppress the effect of
outliers, which is similar to the l2-norm, while maintaining the
rotational invariance as a fundamental property of the Euclidean
space with the l2-norm (Ding et al., 2006; Kwak, 2008).

If a regularization term R(W) is included in Equation, we
obtain:

min
W

n
∑

i=1

∥

∥

∥
WTxi − yi

∥

∥

∥

2
+ λR(W) (4)

where λ ∈ [01] is a constant coefficient. R(W) is defined as:

R(W) =

d
∑

i=1

∥

∥wi
∥

∥

2

(5)

Therefore, themodel with the regularization term in Equation (4)
is given by:

min
W

J(W) =

n
∑

i=1

∥

∥

∥
WTxi − yi

∥

∥

∥

2
+ λR(W) =

∥

∥

∥
XTW− Y

∥

∥

∥

2,1

+ λ ‖W‖2,1 (6)

The last term in Equation (6) is actually a penalty or
regularization term on the model parameters to enforce sparsity;
it can be solved by an effective iterative algorithm (Nie et al.,
2010).

This sparsity-constrained dimensionality reduction model
is called as the SCDR method, and the measurements
associated with very small coefficients in the matrix W—which
approximately equals zero—such as the threshold ε can be
eliminated as nonessential features.

SVM Classifier
The SVM has been widely used as a powerful methodology in
non-linear classification, regression, function estimation, density
estimation, and feature selection and is introduced within
the context of statistical learning theory and structural risk
minimization. In classification problems, an SVM constructs a
hyperplane or set of hyperplanes in a high or infinite dimensional
space in order to achieve a good separation of the hyperplane that
has the largest distance to the nearest training data point of any
class (so-called functional margin), which thus leads to the best
generalization ability for the unseen data points. In this study, a
linear SVMwith a linear kernel was selected for the classification,
and the LIBSVM toolbox was used to perform the classification
task (https://www.csie.ntu.edu.tw/~cjlin/libsvm).

To achieve the best performance and explore the dominant
features associated with core regions, the retained features filtered
by the SCDR were sorted using the coefficients of the parameter
matrix, which represented the importance of each feature in the

classification task, and then the SVM added each feature one-
by-one in order to evaluate their performance. Therefore, the
features with the best performance were determined. Leave-one-
out cross validation (LOOCV) was used in the SVM classification
owing to the small sample size. To avoid optimistically biased
estimates of performance that result from using the same cross-
validation to set the values of the hyper-parameters of the model
and performance estimation, the 10-fold nested cross validation
was used in the inner loop.

RESULTS

Classification Performance
The SVM classification of the three groups was performed
using the cortical features. The classification performance was
reported using accuracy, sensitivity, and specificity. The criteria
for determining the best feature dimension was that the SVM
should achieve the best comprehensive performance that would
consist of a balance between accuracy, sensitivity, and specificity.
The primary measure considered was the accuracy, followed by
the sensitivity, and then the specificity. Each subject had 68
baseline features and 68 longitudinal features at each time point
(e.g., 12 and 24 months).

For the sMCI–NC comparison using the GM volume, the
SCDR determined 52 baseline GM volumes as the dominant
features. The SVM classifier achieved its best performance when
the baseline GM volumes of 25, 16, and 30 features were selected
for the sMCI–NC, cMCI–NC, and sMCI–cMCI comparisons,
respectively. As shown in Table 2, the accuracies were 76.27,
82.14, and 83.72% for the three comparisons, respectively. When
the longitudinal GM volumes in 12 months were considered,
the highest accuracy increased to 85.59, 87.5, and 90.7%, and
the highest performance increased to 88.14, 91.96, and 93.2%,
while all the follow-up features were combined with the baseline
features, and the sensitivity and specificity were also significantly
improved accordingly.

The changes in performance of the SVM with the increasing
dimensionality of the combined features are shown in Figure 1.

The number of retainedGMvolumes filtered by the SCDRwas
99, 95, and 97 for the sMCI–NC, cMCI–NC, and sMCI–cMCI
comparisons, respectively. As shown in Figure 1A, the sorted
GM volumes were added into the SVM classifier one by one. The
accuracy, sensitivity, and specificity fluctuated and then reached
the peak with 88.14% accuracy, 84.78% sensitivity, and 90.28%
specificity in the sMCI–NC classification using 74 features;
91.96% accuracy, 87.50% sensitivity, and 94.44% specificity in the
cMCI–NC classification using 26 features; and 93.20% accuracy,
95.00% sensitivity, and 91.30% specificity in the sMCI–cMCI
classification using 57 features. However, with the increase in the
features, the performances degraded gradually. Therefore, the use
of all the retained features may not ensure the best performance
of the SVM classifier.

With regard to the normalized weights and the spatial
distribution of the selected features from the baseline measures
combined with the longitudinal measures, The selected cortical
surface features with the highest performance were mapped onto
the surface of the brain as shown in Figures 2–4 listed the
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selected count of the features in 68 brain regions. It revealed
different patterns of the GM volume and its underlying changes
between the compared groups. For example, in the sMCI–NC
comparison, most of the brain regions were involved in the
classification, which revealed that sMCI patients suffered from
atrophies in many cortexes and especially in the temporal lobe.
For the sMCI–cMCI comparison, the brain regions included
retained 57 features also were located in all lobes. Although
only 26 features from 22 regions were determined, they had a
prominent ability to discriminate between the cMCI and the NC
groups, and most of the associated regions were in the right
hemisphere.

Similarly, the baseline cortical thickness and the longitudinal
changes were adopted for discrimination using the SVM. The
accuracies were 77.97, 86.44, and 92.37% for the sMCI–NC,
cMCI–NC, and sMCI–cMCI comparisons, respectively, using
the baseline cortical thickness. The performance was improved
significantly when the longitudinal features of the cortical
thickness in 12 months were combined, and the accuracies
reached 82.14, 89.29, and 93.75% for the three comparisons,
respectively. The changes in classification performance with
the increase of the combined cortical thickness were shown in
Figure 1B. The SVM achieved the highest accuracy (92.37, 93.75,
and 98.84%) using the combined measures from all time points;
a similar result was obtained for the sensitivity and specificity.

For the surface area and mean curvature, the three groups
were discriminated using a similar pattern with the GM volume
and the cortical thickness using the baseline and dynamic features
as listed in Figures 1, 3, 4 and Table 2.

Using the selected baseline features, the SVM produced
poor accuracies ranging from 73 to 85%, low sensitivities
ranging from 52 to 85%, and low specificities ranging from
69 to 93% for all the comparisons. However, the classifier
performed better using the selected baseline and longitudinal
features in 12 months with accuracies of 72–94%, sensitivities
of 60–92.5%, and specificities of 80–98%, and it achieved the
highest performance with accuracies of 83–99%, sensitivities of
70–98%, and specificities of 90–100%. Generally, the cortical
thickness provided the best performance in the between-group
classification among the NC, sMCI, and cMCI groups, followed
by the GM volume and the mean curvature, while the surface
area had the weakest ability for classification. Based on the
selected features of all the time points, the cortical thickness
in particular exhibited prominent discriminative power with
an accuracy, a sensitivity, and specificity of 92.37, 84.78, and
97.22% respectively between the sMCI and the NC groups; 93.7,
92.5, and 94.44% respectively in the cMCI–NC comparison;
and 98.84, 97.5, and 100% respectively in the cMCI–sMCI
comparison.

Spatial Distribution of the Essential
Features
According to the spatial distribution of the selected features, it
covered most of the cortex in the temporal, frontal, occipital,
and parietal lobes and insula, which revealed that there existed
significant morphological differences between the three groups.
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FIGURE 1 | Changes in classification performance with the increase in combined features (A) GMV, (B) Cortical thickness, (C) Surface area, and (D) Mean

curvature. The vertical red dot lines denoted the best performances.

As is well known, global brain atrophy has been observed in
the healthy elderly and patients with MCI, and it varied in the
regional atrophy pattern between the three groups, including
the atrophy speed or rate, the brain region distribution (Shiino
et al., 2006; Li et al., 2012; Clerx et al., 2013; Eskildsen et al.,
2013a; Lampert et al., 2014), which were the basis for the
discrimination. Furthermore, there were significant differences
in both feature number and spatial distribution for different
cortical features and comparisons. In order to elucidate our
findings, we focus on the results of the combined features
at all-time points. For the sMCI–NC comparison using GM
volume, it was found that the GM volume in most brain

regions provided effective information. Only seven regions in
the left hemisphere and eight regions in the right hemisphere
were excluded: the left caudal anterior cingulate, transverse
temporal, caudal middle frontal, paracentral, rostral middle
frontal, rostral middle frontal, pericalcarine, and supramarginal;
and right temporal pole, caudal middle frontal, parsopercularis,
parsorbitalis, postcentral, precentral, lingual, and supramarginal.
For the cMCI–NC comparison, 21 regions were involved in
the classification: 7 regions in the left temporal and frontal
lobes and 14 regions in the temporal, frontal, and occipital
lobes. It was suggested that the GM volume from these 22
regions provided sufficient information to distinguish the cMCI
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FIGURE 2 | The normalized weights of combined cortical surface features with the highest (A) GM volume, (B) Cortical thickness, (C) Surface area, and (D)

Mean curvature.
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FIGURE 3 | Selected count of GM volume and cortical thickness in 68 brain regions. Selected count means the count of combined features were selected for

classification with the high performance, left, right denotes left and right hemisphere. (A) GM volume. (B) Cortical thickness.

from the NC subjects. The underlying reason was that the
GM volume decreased more sharply in these regions than
the NC group; the cMCI more closely resembled the AD in
terms of topography of the GM volume decrease and cortical
thinning than the sMCI (Ye et al., 2014). It was noticed that the
selected features covered most of the regions in the comparison
between the sMCI and the cMCI, which was ascribed to higher
amyloid deposition in the case of the latter (Landau et al., 2010,
2012). The spatial distribution of the selected cortical thickness
measurements was quite similar to that of the GM volume.
Twenty-six left regions and 24 right regions from all lobes
were selected for the sMCI–NC comparison, 7 left regions and
14 right regions were effective for the sMCI–NC classification,
and 22 left regions and 22 right regions that covered most of
the cortex were involved in the discrimination of two types of
MCI.

The other two measures, the surface area and the mean
curvature, had patterns similar to the GM volume and the
cortical thickness for the sMCI–NC (with accuracies of 77–
84% and 76–90% respectively), sMCI–cMCI classification (with
accuracies of 81–96% and 73–97% respectively), and the cMCI–
NC classification (with accuracies of 77–85% and 80–92%
respectively). However, more features and brain regions were
included for the cMCI–NC classification than that using the GM
volume and the cortical thickness.

DISCUSSION

A sparsity-constrained dimensionality reduction model was
applied to select the essential features for discriminative analysis
on brain cortical measurements between the sMCI group and
the cMCI group. Four types of measurements including cortical
thickness, surface area, mean curvature, and GM volume were
investigated from both baseline and longitudinalMR images. Our
results suggested that the cortical thickness had the strongest
power to discriminate for the between-group classification,
followed by the GM volume, the mean curvature, and the surface
area. The longitudinal changes in the cortical measurements
could provide effective information for discrimination and
improved the performance of the classifier.

It was observed that the retained features filtered by the SCDR
did not have the best discriminative capability in most of the
classifications. The performance of the SVM classifier using all
the retained features was 5–40% less than that using the subset
of the features with the strongest discriminative ability. This was
attributed to the optimized strategy of feature adding in turn
by the ordered weight of each feature acquired using the SCDR,
which represented its importance or capability in discrimination.

With respect to the relationship between the selected regional
distribution and the neuropsychological dysfunction, it was
speculated that the two MCI groups had atrophy or cortical
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FIGURE 4 | Selected count of surface and mean curvature in 68 brain regions. (A) Surface area. (B) Mean curvature.

thinning not only in early affected regions such as in the lateral
temporal cortex and frontal cortex, but also in the parietal
cortex, occipital cortex, and insula at a relatively late stage. This
was in agreement with the findings due to regional amyloid
deposition in previous studies (Bouwman et al., 2007; Cui et al.,
2011; Camus et al., 2012). As an intermediate stage between the
expected cognitive decline of normal aging and the more serious
decline of dementia, the patients with MCI had impairments in
memory, language, thinking, and judgment. It was remarkable
that the cingulate regions and insula played a key role in both
the cMCI–NC classification and the sMCI–cMCI classification,
which included the caudal anterior cingulate, isthmus cingulate,
posterior cingulate, rostral anterior cingulate, and insular cortex.
The cingulate cortex, a part of the limbic cortex, is linked
to emotion formation and processing, learning, and memory,
while the insula is believed to be linked to diverse functions
such as perception, motor control, self-awareness, cognitive
functioning, and interpersonal experience. However, very few
regions were retrieved for the cMCI–NC classification when
either the GM volume or the cortical thickness was considered;
these regions included the middle temporal, posterior cingulate,
lateral orbitofrontal, postcentral, and lateral occipital cortex, and
they provided strong discriminative power that was enough to
distinguish the cMCI from the NC. These regions are highly
correlated with decision making, sense, recognition, and vision;

the posterior cingulate cortex, especially, formed a central node in
the default mode network of the brain, which was demonstrated
to communicate with various brain networks simultaneously
and was involved in various functions. Moreover, there was
bilateral asymmetry; more regions in the right hemisphere were
retrieved than those in the left hemisphere in the cMCI–NC
comparison.

Furthermore, the selected regional distribution of two MCI
groups illustrated that most of brain regions were involved in
classification, especially those regions with strong discriminative
ability were isthmus cingulate, temporal pole, transverse
temporal in temporal lobe, rostral middle frontal, frontal pole
in frontal lobe and insula. As well known, isthmus cingulate was
connected by a narrow isthmus with the parahippocampal gyrus,
the temporal lobe was a particularly complex brain area involved
in a diversity of functions including auditory, olfactory, memory,
vestibular, visual, and linguistic processing, transverse temporal
participated in processing incoming auditory information. The
rostral middle frontal gyrus, was critical for executive function,
including emotion regulation and working memory. The frontal
pole was closely related to retrospective memory and could
effectively guide goal-directed behavior. As mentioned above,
the insula was believed to be involved in consciousness and
emotional functions. These finding revealed that the cMCI group
suffered from cognitive dysfunction in relation to diverse tasks
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including auditory, olfactory, memory, visual, linguistic and
emotional processing. In comparison with the sMCI group, the
cMCI group experienced greater atrophy or thinning in these
cortexes, which facilitated progression of cognitive dysfunction
and conversion to dementia.

The three parameters including the constant coefficient λ,
the iterations, and the threshold ε of the SCDR model, play an
essential role in dimension reduction. λ controls the strength
of the sparse constraint, a large value of λ will lead to a large
decrease in feature dimension and accelerate the convergence,
and vice versa. The iterations determine the repetition times to
obtain the final resolution. The threshold ε performs as a filter to
select the salient features corresponding to the coefficients with a
weight greater than the threshold and eliminates the insignificant
features. λ, ε, and the iterations were set to 0.25, 0.01, and 15
respectively in this work.

There are several limitations associated with our study. First,
the correlation, and importance of the features were implicit
(unlike in statistical testing), and thus, the significant differences
between the compared groups were found, and the discriminative
power of the extracted measures was evaluated. However,
the correlations between the core features, changes of these
features, and cognitive impairment measurements remained
undetermined. Second, only the cortical structural information
was explored; the correlation between the cortical features with
other types of measurements including neuroimaging data such
as functional MRI, DTI, MRS, genetic and chemical biomarkers
remain to be discovered, and there is great scope for further
development by combining them for effective classification
and conversion prediction. Third, the number of subjects
was limited to 158, and only 2-year follow-up studies were
investigated. The information obtained would have been more
valuable if a larger sample size and longer period had been
considered.

CONCLUSION

This study investigated four cortical surface features to
discriminate two types of patients with sMCI and cMCI, from the
NC using 2 years of follow-up MR images. A sparse-constrained
model was presented to reduce the feature dimensionality in
order to retrieve the core measurements and relative brain
regions for effective discrimination. The performance of the
SVM was significantly improved when the baseline cortical
features were combined with the longitudinal features, which
could effectively reveal morphological changes such as cortical

thinning or GM atrophy. It was highlighted that the SCDR could
not only eliminate redundant and non-significant features, but
also determine the weights to indicate the importance of the
essential features. Consequently, the best performance could be
achieved using the strategy of feature adding in turn based on
their weights.

It was demonstrated that the sparse-constrained model could
determine vital information from cortical measurements for
effective classification between the three compared groups. Our
results suggest that it is feasible to distinguish the sMCI and the

cMCI from healthy elderly using static cortical features combined
with dynamic measurements, and this proposed method has
great potential inmonitoring the advancement ofMCI in patients
and predicting the conversion of MCI to AD.

ETHICS STATEMENT

Data used in this study were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) (http://adni.loni.usc.
edu/). The ADNI data were previously collected across 50
research sites. Study subjects gave written informed consent
at the time of enrollment for imaging and genetic sample
collection and completed questionnaires approved by each
participating sites’ Institutional Review Board (IRB). All
procedures performed in studies involving human participants
were in accordance with the ethical standards of the institutional
and/or national research committee and with the 1964 Helsinki
declaration and its later amendments or comparable ethical
standards.

AUTHOR CONTRIBUTIONS

SG: Design of the work and write the manuscript. CL: Implement
the algorithm. CW and GC: Obtain results. All authors approves
the final version of the work and agree to be accountable for
all aspects of the work in ensuring that questions related to the
accuracy or integrity of any part of the work are appropriately
investigated and resolved.

FUNDING

This study was partly supported by the National Natural Science
Foundation of China (31371008), Science and Technology
Planning Project of Guangdong Province (2015A02024006),
Guangzhou Bureau of Science and Technology (201604020170)
and the China Scholar Council.

REFERENCES

Adaszewski, S., Dukart, J., Kherif, F., Frackowiak, R., Draganski, B., and

Neuroimaging, A. D. (2013). How early can we predict Alzheimer’s

disease using computational anatomy? Neurobiol. Aging 34, 2815–2826.

doi: 10.1016/j.neurobiolaging.2013.06.015

Banzo, I., Jimenez-Bonilla, J. F., Martinez-Rodriguez, I., Quirce, R., de Arcocha-

Torres, M., Bravo-Ferrer, Z., et al. (2015). Patterns of C-PIB cerebral retention

in mild cognitive impairment patients. Rev. Esp. Med. Nucl. Imagen. Mol. 35,

171–174. doi: 10.1016/j.remn.2015.09.008.

Bao, B. K., Zhu, G., Shen, J., and Yan, S. (2013). Robust image

analysis with sparse representation on quantized visual features.

IEEE Trans. Image Process. 22, 860–871. doi: 10.1109/TIP.2012.22

19543

Boutet, C., Chupin, M., Lehericy, S., Marrakchi-Kacem, L., Epelbaum, S., Poupon,

C., et al. (2014). Detection of volume loss in hippocampal layers in Alzheimer’s

Frontiers in Aging Neuroscience | www.frontiersin.org 11 May 2017 | Volume 9 | Article 146

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
https://doi.org/10.1016/j.neurobiolaging.2013.06.015
https://doi.org/10.1016/j.remn.2015.09.008.
https://doi.org/10.1109/TIP.2012.2219543
http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


Guo et al. Conversion Analysis on MCI

disease using 7 T MRI: a feasibility study. Neuroimage Clin. 5, 341–348.

doi: 10.1016/j.nicl.2014.07.011

Bouwman, F. H., Schoonenboom, S. N., van der Flier, W. M., van Elk, E. J.,

Kok, A., Barkhof, F., et al. (2007). CSF biomarkers and medial temporal lobe

atrophy predict dementia in mild cognitive impairment. Neurobiol. Aging 28,

1070–1074. doi: 10.1016/j.neurobiolaging.2006.05.006

Camus, V., Payoux, P., Barre, L., Desgranges, B., Voisin, T., Tauber, C., et al.

(2012). Using PET with 18F-AV-45 (florbetapir) to quantify brain amyloid

load in a clinical environment. Eur. J. Nucl. Med. Mol. Imaging 39, 621–631.

doi: 10.1007/s00259-011-2021-8

Chetelat, G., Landeau, B., Eustache, F., Mezenge, F., Viader, F., de la Sayette,

V., et al. (2005). Using voxel-based morphometry to map the structural

changes associated with rapid conversion in MCI: a longitudinal MRI study.

Neuroimage 27, 934–946. doi: 10.1016/j.neuroimage.2005.05.015

Chételat, G., Villemagne, V. L., Bourgeat, P., Pike, K. E., Jones, G., Ames, D., et al.

(2010). Relationship between atrophy and β-amyloid deposition in Alzheimer

disease. Ann. Neurol. 67, 317–324. doi: 10.1002/ana.21955

Clerx, L., van Rossum, I. A., Burns, L., Knol, D. L., Scheltens, P., Verhey, F.,

et al. (2013). Measurements of medial temporal lobe atrophy for prediction

of Alzheimer’s disease in subjects with mild cognitive impairment. Neurobiol.

Aging 34, 2003–2013. doi: 10.1016/j.neurobiolaging.2013.02.002

Cui, Y., Liu, B., Luo, S., Zhen, X., Fan, M., Liu, T., et al. (2011).

Identification of conversion from mild cognitive impairment to

Alzheimer’s disease using multivariate predictors. PLoS ONE 6:e21896.

doi: 10.1371/journal.pone.0021896

Dai, Z., and He, Y. (2014). Disrupted structural and functional brain connectomes

in mild cognitive impairment and Alzheimer’s disease. Neurosci. Bull. 30,

217–232. doi: 10.1007/s12264-013-1421-0

Davatzikos, C., Bhatt, P., Shaw, L. M., Batmanghelich, K. N., and Trojanowski,

J. Q. (2011). Prediction of MCI to AD conversion, via MRI, CSF

biomarkers, and pattern classification. Neurobiol. Aging 32, 2322.e2319–2327.

doi: 10.1016/j.neurobiolaging.2010.05.023

Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker,

D., et al. (2006). An automated labeling system for subdividing the human

cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage

31, 968–980. doi: 10.1016/j.neuroimage.2006.01.021

Dickerson, B. C., and Sperling, R. A. (2009). Large-scale functional brain network

abnormalities in Alzheimer’s disease: insights from functional neuroimaging.

Behav. Neurol. 21, 63–75. doi: 10.1155/2009/610392

Dickerson, B. C., Wolk, D. A., and Initi, A. D. N. (2012). MRI cortical thickness

biomarker predicts AD-like CSF and cognitive decline in normal adults.

Neurology 78, 84–90. doi: 10.1212/WNL.0b013e31823efc6c

Ding, C., Zhou, D., He, X., and Zha, H. (2006). “R1-PCA:Rotational invariant

L1-norm principal component analysis for robust subspace factorization,” in

Proceeding of International Conference on Machine Learning (Pittsburgh, PA:

ICML).

Driscoll, I., Davatzikos, C., An, Y., Wu, X., Shen, D., Kraut, M.,

et al. (2009). Longitudinal pattern of regional brain volume change

differentiates normal aging from MCI. Neurology 72, 1906–1913.

doi: 10.1212/WNL.0b013e3181a82634

Eskildsen, S. F., Coupe, P., Garcia-Lorenzo, D., Fonov, V., Pruessner, J. C., and

Collins, D. L. (2013a). Prediction of Alzheimer’s disease in subjects with

mild cognitive impairment from the ADNI cohort using patterns of cortical

thinning. Neuroimage 65, 511–521. doi: 10.1016/j.neuroimage.2012.09.058

Eskildsen, S. F., Coupe, P., Garcia-Lorenzo, D., Fonov, V., Pruessner, J. C.,

Collins, D. L., et al. (2013b). Prediction of Alzheimer’s disease in subjects with

mild cognitive impairment from the ADNI cohort using patterns of cortical

thinning. Neuroimage 65, 511–521. doi: 10.1016/j.neuroimage.2012.09.058

Fan, Y., Batmanghelich, N., Clark, C. M., Davatzikos, C., and Alzheimer’s

Disease Neuroimaging Initiative (2008). Spatial patterns of brain atrophy

in MCI patients, identified via high-dimensional pattern classification,

predict subsequent cognitive decline. Neuroimage 39, 1731–1743.

doi: 10.1016/j.neuroimage.2007.10.031

Farlow, M. R., He, Y., Tekin, S., Xu, J., Lane, R., and Charles, H. C. (2004).

Impact of APOE in mild cognitive impairment. Neurology 63, 1898–1901.

doi: 10.1212/01.WNL.0000144279.21502.B7

Ferreira, D., Rivero-Santana, A., Perestelo-Perez, L., Westman, E., Wahlund, L.

O., Sarria, A., et al. (2014). Improving CSF biomarkers’ performance for

predicting progression from mild cognitive impairment to Alzheimer’s disease

by considering different confounding factors: a meta-analysis. Front. Aging

Neurosci. 6:287. doi: 10.3389/fnagi.2014.00287

Fischl, B., Liu, A., and Dale, A. M. (2001). Automated manifold surgery:

constructing geometrically accurate and topologically correct models

of the human cerebral cortex. IEEE Trans. Med. Imaging 20, 70–80.

doi: 10.1109/42.906426

Franko, E., and Joly, O. (2013). Evaluating Alzheimer’s disease progression

using rate of regional hippocampal atrophy. PLoS ONE 8:e71354.

doi: 10.1371/journal.pone.0071354

Gao, F., and Barker, P. B. (2014). Various MRS application tools for Alzheimer’s

disease and mild cognitive impairment. AJNR Am. J. Neuroradiol. 35, S4–S1.

doi: 10.3174/ajnr.A3944

Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. (2002). Gene selection for

cancer classification using support vector machines.Mach. Learn. 46, 389–422.

doi: 10.1023/A:1012487302797

Hall, M. A., and Smith, L. A. (1999). “Feature selection for machine learning:

comparing a correlationbased filter approach to the wrapper,” in Proceedings

of the Twelfth International Florida Artificial Intelligence Research Society

Conference (Orlando, FL: AAAI Press), 235–239.

Hinrichs, C., Singh, V., Xu, G. F., Johnson, S. C., and Neuroimaging, A. D.

(2011). Predictive markers for AD in a multi-modality framework: an analysis

of MCI progression in the ADNI population. Neuroimage 55, 574–589.

doi: 10.1016/j.neuroimage.2010.10.081

Im, K., Lee, J. M., Seo, S. W., Kim, S. H., Kim, S. I., and Na, D. L. (2008). Sulcal

morphology changes and their relationship with cortical thickness and gyral

white matter volume in mild cognitive impairment and Alzheimer’s disease.

Neuroimage 43, 103–113. doi: 10.1016/j.neuroimage.2008.07.016

Jack, C. R., Wiste, H. J., Vemuri, P., Weigand, S. D., Senjem, M. L., Zeng, G. A.,

et al. (2010). Brain beta-amyloid measures and magnetic resonance imaging

atrophy both predict time-to-progression from mild cognitive impairment to

Alzheimer’s disease. Brain 133, 3336–3348. doi: 10.1093/brain/awq277

Kandimalla, R. J., Prabhakar, S., Binukumar, B. K.,Wani,W. Y., Gupta, N., Sharma,

D. R., et al. (2011). Apo-Eepsilon4 allele in conjunction with Abeta42 and tau

in CSF: biomarker for Alzheimer’s disease. Curr. Alzheimer Res. 8, 187–196.

doi: 10.2174/156720511795256071

Kandimalla, R. J., Prabhakar, S., Wani, W. Y., Kaushal, A., Gupta, N., Sharma, D.

R., et al. (2013). CSF p-Tau levels in the prediction of Alzheimer’s disease. Biol.

Open 2, 1119–1124. doi: 10.1242/bio.20135447

Kim, G. H., Jeon, S., Seo, S. W., Kim, M. J., Kim, J. H., Roh, J. H., et al. (2012).

Topography of cortical thinning areas associated with hippocampal atrophy

(HA) in patients with Alzheimer’s disease (AD). Arch. Gerontol. Geriatr. 54,

E122–E129. doi: 10.1016/j.archger.2011.10.013

Kohannim, O., Hua, X., Hibar, D. P., Lee, S., Chou, Y. Y., and Toga, A. W. (2010).

Boosting power for clinical trials using classifiers based onmultiple biomarkers.

Neurobiol. Aging 31, 1429–1442. doi: 10.1016/j.neurobiolaging.2010.04.022

Kwak, N. (2008). Principal component analysis based on l1-norm

maximization. IEEE Trans. Pattern Anal. Mach. Intell. 30, 1672–1680.

doi: 10.1109/TPAMI.2008.114

Lampert, E. J., Roy Choudhury, K., Hostage, C. A., Rathakrishnan, B., Weiner, M.,

Petrella, J. R., et al. (2014). Brain atrophy rates in first degree relatives at risk for

Alzheimer’s. Neuroimage Clin. 6, 340–346. doi: 10.1016/j.nicl.2014.08.024

Landau, S.M., Harvey, D.,Madison, C.M., Reiman, E.M., Foster, N. L., Aisen, P. S.,

et al. (2010). Comparing predictors of conversion and decline in mild cognitive

impairment. Neurology 75, 230–238. doi: 10.1212/WNL.0b013e3181e8e8b8

Landau, S. M., Mintun, M. A., Joshi, A. D., Koeppe, R. A., Petersen, R. C., Aisen,

P. S., et al. (2012). Amyloid deposition, hypometabolism, and longitudinal

cognitive decline. Ann. Neurol. 72, 578–586. doi: 10.1002/ana.23650

Li, H. J., Hou, X. H., Liu, H. H., Yue, C. L., He, Y., and Zuo, X. N. (2015).

Toward systems neuroscience in mild cognitive impairment and Alzheimer’s

disease: a meta-analysis of 75 fMRI studies. Hum. Brain Mapp. 36, 1217–1232.

doi: 10.1002/hbm.22689

Li, X., Cao, M., Zhang, J., Chen, K., Chen, Y., Ma, C., et al. (2014). Structural

and functional brain changes in the default mode network in subtypes of

amnestic mild cognitive impairment. J. Geriatr. Psychiatry Neurol. 27, 188–198.

doi: 10.1177/0891988714524629

Li, Y., Wang, Y., Wu, G., Shi, F., Zhou, L., Lin, W., et al. (2012). Discriminant

analysis of longitudinal cortical thickness changes in Alzheimer’s disease

Frontiers in Aging Neuroscience | www.frontiersin.org 12 May 2017 | Volume 9 | Article 146

https://doi.org/10.1016/j.nicl.2014.07.011
https://doi.org/10.1016/j.neurobiolaging.2006.05.006
https://doi.org/10.1007/s00259-011-2021-8
https://doi.org/10.1016/j.neuroimage.2005.05.015
https://doi.org/10.1002/ana.21955
https://doi.org/10.1016/j.neurobiolaging.2013.02.002
https://doi.org/10.1371/journal.pone.0021896
https://doi.org/10.1007/s12264-013-1421-0
https://doi.org/10.1016/j.neurobiolaging.2010.05.023
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1155/2009/610392
https://doi.org/10.1212/WNL.0b013e31823efc6c
https://doi.org/10.1212/WNL.0b013e3181a82634
https://doi.org/10.1016/j.neuroimage.2012.09.058
https://doi.org/10.1016/j.neuroimage.2012.09.058
https://doi.org/10.1016/j.neuroimage.2007.10.031
https://doi.org/10.1212/01.WNL.0000144279.21502.B7
https://doi.org/10.3389/fnagi.2014.00287
https://doi.org/10.1109/42.906426
https://doi.org/10.1371/journal.pone.0071354
https://doi.org/10.3174/ajnr.A3944
https://doi.org/10.1023/A:1012487302797
https://doi.org/10.1016/j.neuroimage.2010.10.081
https://doi.org/10.1016/j.neuroimage.2008.07.016
https://doi.org/10.1093/brain/awq277
https://doi.org/10.2174/156720511795256071
https://doi.org/10.1242/bio.20135447
https://doi.org/10.1016/j.archger.2011.10.013
https://doi.org/10.1016/j.neurobiolaging.2010.04.022
https://doi.org/10.1109/TPAMI.2008.114
https://doi.org/10.1016/j.nicl.2014.08.024
https://doi.org/10.1212/WNL.0b013e3181e8e8b8
https://doi.org/10.1002/ana.23650
https://doi.org/10.1002/hbm.22689
https://doi.org/10.1177/0891988714524629
http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


Guo et al. Conversion Analysis on MCI

using dynamic and network features. Neurobiol. Aging 33, 427.e415–430.

doi: 10.1016/j.neurobiolaging.2010.11.008

Mattsson, N., Portelius, E., Rolstad, S., Gustavsson, M., Andreasson, U.,

Stridsberg, M., et al. (2012). Longitudinal cerebrospinal fluid biomarkers over

four years in mild cognitive impairment. J. Alzheimers. Dis. 30, 767–778.

doi: 10.1016/j.jalz.2012.05.203

McEvoy, L. K., Holland, D., Hagler, D. J. Jr., Fennema-Notestine, C., Brewer, J. B.,

and Dale, A. M. (2011). Mild cognitive impairment: baseline and longitudinal

structural MR imaging measures improve predictive prognosis. Radiology 259,

834–843. doi: 10.1148/radiol.11101975

Medina, D., DeToledo-Morrell, L., Urresta, F., Gabrieli, J. D. E., Moseley,

M., Fleischman, D., et al. (2006). White matter changes in mild cognitive

impairment and AD: a diffusion tensor imaging study. Neurobiol. Aging 27,

663–672. doi: 10.1016/j.neurobiolaging.2005.03.026

Modrego, P. J., Fayed, N., and Pina, M. A. (2005). Conversion from

mild cognitive impairment to probable Alzheimer’s disease predicted by

brain magnetic resonance spectroscopy. Am. J. Psychiatry 162, 667–675.

doi: 10.1176/appi.ajp.162.4.667

Modrego, P. J., Fayed, N., and Sarasa, M. (2011). Magnetic resonance

spectroscopy in the prediction of early conversion from amnestic mild

cognitive impairment to dementia: a prospective cohort study. BMJ Open

1:e000007. doi: 10.1136/bmjopen-2010-000007

Morris, J. C., and Cummings, J. (2005). Mild cognitive impairment (MCI)

represents early-stage Alzheimer’s disease. J. Alzheimers Dis. 7, 235–239.

doi: 10.3233/JAD-2005-7306

Morris, J. C., Storandt, M., Miller, J. P., McKeel, D. W., Price, J. L., Rubin, E.

H., et al. (2001). Mild cognitive impairment represents early-stage Alzheimer

disease. Arch. Neurol. 58, 397–405. doi: 10.1001/archneur.58.3.397

Mosconi, L., Mistur, R., Switalski, R., Tsui, W. H., Glodzik, L., Li, Y., et al. (2009).

FDG-PET changes in brain glucose metabolism from normal cognition to

pathologically verified Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging 36,

811–822. doi: 10.1007/s00259-008-1039-z

Nie, F., Huang, H., Cai, X., and Ding, C. H. (2010). “Efficient and robust

feature selection via joint ℓ2,1-norms minimization,” in Advances in Neural

Information Processing Systems 23 (NIPS 2010), 1813–1821.

Park, H., Yang, J. J., Seo, J., Lee, J. M., and Adni (2013). Dimensionality reduced

cortical features and their use in predicting longitudinal changes in Alzheimer’s

disease. Neurosci. Lett. 550, 17–22. doi: 10.1016/j.neulet.2013.06.042

Peng, G. P., Feng, Z., He, F. P., Chen, Z. Q., Liu, X. Y., Liu, P., et al. (2015).

Correlation of hippocampal volume and cognitive performances in patients

with either mild cognitive impairment or Alzheimer’s disease. CNS Neurosci.

Ther. 21, 15–22. doi: 10.1111/cns.12317

Petersen, R. C., Roberts, R. O., Knopman, D. S., Boeve, B. F., Geda, Y. E., Ivnik,

R. J., et al. (2009). Mild cognitive impairment: ten years later. Arch. Neurol. 66,

1447–1455. doi: 10.1001/archneurol.2009.266

Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., and

Kokmen, E. (1999). Mild cognitive impairment - clinical characterization and

outcome. Arch. Neurol. 56, 303–308. doi: 10.1001/archneur.56.3.303

Pilatus, U., Lais, C., Rochmont Adu, M., Kratzsch, T., Frolich, L., Maurer, K., et al.

(2009). Conversion to dementia in mild cognitive impairment is associated

with decline of N-actylaspartate and creatine as revealed bymagnetic resonance

spectroscopy. Psychiatry Res. 173, 1–7. doi: 10.1016/j.pscychresns.2008.07.015

Piscopo, P., Tosto, G., Belli, C., Talarico, G., Galimberti, D., Gasparini, M.,

et al. (2015). SORL1 gene is associated with the conversion from mild

cognitive impairment to Alzheimer’s disease. J. Alzheimers. Dis. 46, 771–776.

doi: 10.3233/JAD-141551

Prince, M., Albanese, E., and Guerchet, M. (2014). World Alzheimer Report

2014 [Online]. Alzheimer’s Disease International. Available online at:

http://www.alz.co.uk/research/world-report-2014 [Accessed].

Prince, M., Prina, M., and Guerchet, M. (2013). World Alzheimer Report

2013 [Online]. Alzheimer’s Disease International. Available online at:

http://www.alz.co.uk/research/world-report-2013 [Accessed].

Prince, M., Wimo, A., Guerchet, M., Ali, G., Wu, Y., and Prina, M. (2015). World

Alzheimer Report 2015 [Online]. Alzheimer’s Disease International. Available

online at: http://www.alz.co.uk/research/world-report-2015 [Accessed].

Risacher, S. L., Kim, S., Shen, L., Nho, K., Foroud, T., Green, R. C., et al. (2013). The

role of apolipoprotein E (APOE) genotype in early mild cognitive impairment

(E-MCI). Front. Aging Neurosci. 5:11. doi: 10.3389/fnagi.2013.00011

Rose, S. E., Chen, F., Chalk, J. B., Zelaya, F. O., Strugnell, W. E., Benson, M.,

et al. (2000). Loss of connectivity in Alzheimer’s disease: an evaluation of white

matter tract integrity with colour codedMR diffusion tensor imaging. J. Neurol.

Neurosurg. Psychiatr. 69, 528–530. doi: 10.1136/jnnp.69.4.528

Schuff, N., Woerner, N., Boreta, L., Kornfield, T., Shaw, L. M., Trojanowski,

J. Q., et al. (2009). MRI of hippocampal volume loss in early Alzheimers

disease in relation to ApoE genotype and biomarkers. Brain 132, 1067–1077.

doi: 10.1093/brain/awp007

Segonne, F., Dale, A. M., Busa, E., Glessner, M., Salat, D., Hahn, H. K., et al. (2004).

A hybrid approach to the skull stripping problem in MRI. Neuroimage 22,

1060–1075. doi: 10.1016/j.neuroimage.2004.03.032

Segonne, F., Pacheco, J., and Fischl, B. (2007). Geometrically accurate topology-

correction of cortical surfaces using nonseparating loops. IEEE Trans. Med.

Imaging 26, 518–529. doi: 10.1109/TMI.2006.887364

Shen, L., Kim, S., Risacher, S. L., Nho, K., Swaminathan, S., West, J. D., et al.

(2010). Whole genome association study of brain-wide imaging phenotypes for

identifying quantitative trait loci in MCI and AD: a study of the ADNI cohort.

Neuroimage 53, 1051–1063. doi: 10.1016/j.neuroimage.2010.01.042

Shiino, A., Watanabe, T., Maeda, K., Kotani, E., Akiguchi, I., and Matsuda, M.

(2006). Four subgroups of Alzheimer’s disease based on patterns of atrophy

using VBM and a unique pattern for early onset disease.Neuroimage 33, 17–26.

doi: 10.1016/j.neuroimage.2006.06.010

Singh, N., Wang, A. Y., Sankaranarayanan, P., Fletcher, P. T., and Joshi, S. (2012).

Genetic, structural and functional imaging biomarkers for early detection of

conversion from MCI to AD. Med. Image Comput. Comput. Assist. Interv.

15(Pt 1), 132–140. doi: 10.1007/978-3-642-33415-3_17

Sled, J. G., Zijdenbos, A. P., and Evans, A. C. (1998). A nonparametric method for

automatic correction of intensity nonuniformity inMRI data. IEEE Trans. Med.

Imaging 17, 87–97. doi: 10.1109/42.668698

Smailagic, N., Vacante, M., Hyde, C., Martin, S., Ukoumunne, O., and

Sachpekidis, C. (2015). (1)(8)F-FDG PET for the early diagnosis of

Alzheimer’s disease dementia and other dementias in people with mild

cognitive impairment (MCI). Cochrane Database Syst. Rev. 1:CD010632.

doi: 10.1002/14651858.CD010632.pub2

Targosz-Gajniak, M. G., Siuda, J. S., Wicher, M. M., Banasik, T. J., Bujak, M. A.,

Augusciak-Duma, A. M., et al. (2013). Magnetic resonance spectroscopy as a

predictor of conversion of mild cognitive impairment to dementia. J. Neurol.

Sci. 335, 58–63. doi: 10.1016/j.jns.2013.08.023

Villain, N., Desgranges, B., Viader, F., de la Sayette, V., Mezenge, F., Landeau,

B., et al. (2008). Relationships between hippocampal atrophy, white matter

disruption, and graymatter hypometabolism in Alzheimer’s disease. J. Neurosci.

28, 6174–6181. doi: 10.1523/JNEUROSCI.1392-08.2008

Wang, H., Nie, F., Huang, H., Risacher, S., Ding, C., Saykin, A. J., et al. (2011).

“Sparse multi-task regression and feature selection to identify brain imaging

predictors for memory performance,” in Proceedings of IEEE International

Conference on Computer Vision (Barcelona), 557–562.

Wang, P., Zhou, B., Yao, H., Zhan, Y., Zhang, Z., Cui, Y., et al. (2015). Aberrant

intra- and inter-network connectivity architectures in Alzheimer’s disease and

mild cognitive impairment. Sci. Rep. 5:14824. doi: 10.1038/srep14824

Watanabe, T., Shiino, A., and Akiguchi, I. (2015). Prediction of conversion

from amnestic mild cognitive impairment to Alzheimer’s disease using

proton magnetic resonance spectroscopy. Rinsho Shinkeigaku 55, 709–715.

doi: 10.5692/clinicalneurol.cn-000751

Westman, E., Muehlboeck, J. S., and Simmons, A. (2012). Combining

MRI and CSF measures for classification of Alzheimer’s disease and

prediction of mild cognitive impairment conversion. Neuroimage 62, 229–238.

doi: 10.1016/j.neuroimage.2012.04.056

Yan, H., and Yang, J. (2015). Sparse discriminative feature selection. Pattern

Recognit. 48, 1827–1835. doi: 10.1016/j.patcog.2014.10.021

Yang, C. L., Shen, J. L., Peng, J. Y., and Fan, J. P. (2013). Image collection

summarization via dictionary learning for sparse representation. Pattern

Recognit. 46, 948–961. doi: 10.1016/j.patcog.2012.07.011

Ye, B. S., Seo, S. W., Yang, J. J., Kim, H. J., Kim, Y. J., Yoon, C. W., et al.

(2014). Comparison of cortical thickness in patients with early-stage versus

late-stage amnestic mild cognitive impairment. Eur. J. Neurol. 21, 86–92.

doi: 10.1111/ene.12251

Yi, L. Y., Liang, X., Liu, D. M., Sun, B., Ying, S., Yang, D. B., et al. (2015).

Disrupted topological organization of resting-state functional brain network

Frontiers in Aging Neuroscience | www.frontiersin.org 13 May 2017 | Volume 9 | Article 146

https://doi.org/10.1016/j.neurobiolaging.2010.11.008
https://doi.org/10.1016/j.jalz.2012.05.203
https://doi.org/10.1148/radiol.11101975
https://doi.org/10.1016/j.neurobiolaging.2005.03.026
https://doi.org/10.1176/appi.ajp.162.4.667
https://doi.org/10.1136/bmjopen-2010-000007
https://doi.org/10.3233/JAD-2005-7306
https://doi.org/10.1001/archneur.58.3.397
https://doi.org/10.1007/s00259-008-1039-z
https://doi.org/10.1016/j.neulet.2013.06.042
https://doi.org/10.1111/cns.12317
https://doi.org/10.1001/archneurol.2009.266
https://doi.org/10.1001/archneur.56.3.303
https://doi.org/10.1016/j.pscychresns.2008.07.015
https://doi.org/10.3233/JAD-141551
http://www.alz.co.uk/research/world-report-2014
http://www.alz.co.uk/research/world-report-2013
http://www.alz.co.uk/research/world-report-2015
https://doi.org/10.3389/fnagi.2013.00011
https://doi.org/10.1136/jnnp.69.4.528
https://doi.org/10.1093/brain/awp007
https://doi.org/10.1016/j.neuroimage.2004.03.032
https://doi.org/10.1109/TMI.2006.887364
https://doi.org/10.1016/j.neuroimage.2010.01.042
https://doi.org/10.1016/j.neuroimage.2006.06.010
https://doi.org/10.1007/978-3-642-33415-3_17
https://doi.org/10.1109/42.668698
https://doi.org/10.1002/14651858.CD010632.pub2
https://doi.org/10.1016/j.jns.2013.08.023
https://doi.org/10.1523/JNEUROSCI.1392-08.2008
https://doi.org/10.1038/srep14824
https://doi.org/10.5692/clinicalneurol.cn-000751
https://doi.org/10.1016/j.neuroimage.2012.04.056
https://doi.org/10.1016/j.patcog.2014.10.021
https://doi.org/10.1016/j.patcog.2012.07.011
https://doi.org/10.1111/ene.12251
http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


Guo et al. Conversion Analysis on MCI

in subcortical vascular mild cognitive impairment. CNS Neurosci. Ther. 21,

846–854. doi: 10.1111/cns.12424

Zhang, N., Song, X., Bartha, R., Beyea, S., D’Arcy, R., Zhang, Y., et al. (2014).

Advances in high-field magnetic resonance spectroscopy in Alzheimer’s

disease.Curr. Alzheimer Res. 11, 367–388. doi: 10.2174/15672050116661403022

00312

Zhang, S., Han, D., Tan, X., Feng, J., Guo, Y., and Ding, Y. (2012).

Diagnostic accuracy of 18 F-FDG and 11 C-PIB-PET for prediction of

short-term conversion to Alzheimer’s disease in subjects with mild cognitive

impairment. Int. J. Clin. Pract. 66, 185–198. doi: 10.1111/j.1742-1241.2011.

02845.x

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Guo, Lai, Wu, Cen and The Alzheimer’s Disease Neuroimaging

Initiative. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) or licensor are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Aging Neuroscience | www.frontiersin.org 14 May 2017 | Volume 9 | Article 146

https://doi.org/10.1111/cns.12424
https://doi.org/10.2174/1567205011666140302200312
https://doi.org/10.1111/j.1742-1241.2011.02845.x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive

	Conversion Discriminative Analysis on Mild Cognitive Impairment Using Multiple Cortical Features from MR Images
	Introduction
	Materials and Methods
	Subjects
	Image Acquisition
	Data Processing and Cortical Features Computation
	Sparsity-Constrained Dimensionality Reduction
	SVM Classifier

	Results
	Classification Performance
	Spatial Distribution of the Essential Features

	Discussion
	Conclusion
	Ethics Statement
	Author Contributions
	Funding
	References


